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AROMATISATION OF 3-CARBOMETHOXY-3-METHYL-3H-PYRAZOL

SOLVENT EFFECT AND CATALYSIS THROUGH ACID
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At 60° the title compound isomerises quantitatively to aromatic products 3 and
4. A kinetic study reveals the influence of solvent polarity and of acid on the

rate and direction of this reaction.

The rearrangement of 3,3-disubstituted 3H-pyrazoles under the influence of heat
or acid to aromatic products, first described by Van Alphen [1l] and by Hiittel
[2], is documented by many examples in the recent literature. This reaction can
be considered as proceeding through a sigmatropic 1,5-(1,2-)shift of a functional

group to the adijacent carbon or nitrogen atom [3].

In this communication we describe the synthesis and rearrangement of 3-carbo-
methoxy-3-methyl-3H-pyrazol (2). This compound serves as a model for the study

of the influence of solvent polarity and acid on the rate and direction of
sigmatropic carbomethoxy-migration, a reaction which we have observed in an other

system [4].

The title compound 2, a colourless oil of bp. 42 - 47°/0.1 Torr [5], has been
prepared by the sequence of reaction steps indicated in scheme 1. Elimination of
acetic acid from pyrazolin 1 (mp. 58 - 59° [5]) occurs at 100° or with 1N HCl at
room temperature yielding 3 (60 - 90%) and 4/5 (10 - 40 %). From this we conclude
that 2 is an intermediate and that it rearranges faster than it is formed from 1.
Base catalysed elimination with potassium hexamethyldisilylamide in THF at =-70°
gives 5 and a small amount of 3-methylpyrazol. It is likely that 2 is actually
formed under these conditions but is converted to 5 through the catalytic action
of the 3-methylpyrazol anion. This led us to carry out the reaction in the pre=-
sence of chloromethylformate as a scavenger for this anion. In this way compound
2 was obtained as the major reaction product from 1 and could be isolated in a
yvield of 52 %.
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As other 3-acyl-3H-pyrazoles [6] compound 2 is labile. At 60° it rearranges

quantitatively to a mixture of 3 and 4 through a shift of the carbomethoxy
group. The formation of 4 at the exclusion of its more stable isomer 5 [7] is
evidence for an intramolecular, pericyclic mechanism for the rearrangement.
Such a reaction course for both isomerisation pathways of 2 is further con=

firmed by the independence of product composition from reactant concentration.

The first order rate constants for the formation 3/4 from 2 [8] show a signi-
ficant but small solvent effect (see table). This leads us to exclude zwitter-
ionic structures such as 6 or 7 as distinct reaction intermediates [9]. However,
it indicates some polar character in the transition state of the sigmatropic
shift reaction. Unexpectedly the charge separation seems to be more pronounced
for carbomethoxy-migration toward carbon (2 —~ 3) than for migration toward

nitrogen (2 - 4).

The isomerisation of 2 is subject to acid catalysis. In acetic acid the rate is
faster than would be expected from the increased solvent polarity. In dioxane

a strong rate enhancement is observed upon addition of trifluorocacetic acid (TFA).
Furthermore, the 3/4 product ratioc changes from 22:78 in the uncatalysed reaction

(dioxane) to 90:10 with acid.

We interpret the formation of and in the acid catalysed process as occurring
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from the two isomeric cations and according to scheme 2, the product ratio
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being determined by the value of the equilibrium constant K between 8 and 9 and
by the ratio k8-—3/k9-4 of the two rate constants for reaction from 8 and from
9. Protonation on oxygen, which has been proposed in other acid catalysed ester
migrations [12], cannot rigorously be excluded. However, it seems unlikely in

view of the known basicity of the cis-azo group [13].

Table Isomerisation of 2 to 3 & 4 at 64.8°.

solvent ET a) kobs. lo4 products partial rate constants, s_l
st 3:4 k,_5-10® k,_, 10"
CCl4 32.5 1.09 20 : 8O 0.22 0.87
dioxane 36.0 1.36 22 : 78 0.30 1.06
C6H5C1 37.5 1.70 28 : 72 0.48 1.22
C6H5CN 42.0 2.57 39 : 61 1.00 1.57
t-butanol 43.9 3.19 44 : 56 1.40 1.79
DMSO 45.0 3.09 46 : 54 1.42 1.67
acetic acid 51.2 47.8 90 : 10 43.0 4.8
0.1N TFA/dioxane 2.1 39 : 61 0.8 1.3
1N TFA/dioxane 16.9 81 : 19 13.7 3.2
5N TFA/dioxane 1800 ) 90 : 10 4320 480

a) Solvent polarity parameter: Ch. Reichardt, Angew. Chem. 91, 119 (1979).

b) Extrapolated from rate measurements at lower temperature.

The participation of the carbomethoxy group in cationic 1,2-shifts is known from
pinacol type rearrangements in aliphatic systems [14]. It implies a transfer of
positive charge to the carbonyl carbon in the transition state 10 and its stab-

ilisation according to formula 11 through the oxygen free electron pairs.
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This work shows that 3H-pyrazoles are suitable model compounds for the study of
sigmatropic 1,5- (1,2-)shift reactions involving functional groups at moderate
temperature. Further results along this line are reported in the accompanying

communication [15].
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