AROMATISATION OF 3-CARBOMETHOXY-3-METHYL-3H-PYRAZOL SOLVENT EFFECT AND CATALYSIS THROUGH ACID

Peter Schiess^{*} and Henri Stalder Institut für Organische Chemie der Universität St. Johanns-Ring 19, CH-4056 Basel, Switzerland

At 60° the title compound isomerises quantitatively to aromatic products 3 and $\underline{4}$. A kinetic study reveals the influence of solvent polarity and of acid on the rate and direction of this reaction.

The rearrangement of 3,3-disubstituted 3H-pyrazoles under the influence of heat or acid to aromatic products, first described by Van Alphen [1] and by Hüttel [2], is documented by many examples in the recent literature. This reaction can be considered as proceeding through a sigmatropic 1,5-(1,2-) shift of a functional group to the adjacent carbon or nitrogen atom [3].

In this communication we describe the synthesis and rearrangement of 3-carbomethoxy-3-methyl-3H-pyrazol (2). This compound serves as a model for the study of the influence of solvent polarity and acid on the rate and direction of sigmatropic carbomethoxy-migration, a reaction which we have observed in an other system [4].

The title compound $\underline{2}$, a colourless oil of bp. $42 - 47^{\circ}/0.1$ Torr [5], has been prepared by the sequence of reaction steps indicated in scheme 1. Elimination of acetic acid from pyrazolin $\underline{1}$ (mp. $58 - 59^{\circ}$ [5]) occurs at 100° or with 1N HCl at room temperature yielding $\underline{3}$ (60 - 90%) and $\underline{4/5}$ (10 - 40 %). From this we conclude that $\underline{2}$ is an intermediate and that it rearranges faster than it is formed from $\underline{1}$. Base catalysed elimination with potassium hexamethyldisilylamide in THF at -70° gives $\underline{5}$ and a small amount of 3-methylpyrazol. It is likely that $\underline{2}$ is actually formed under these conditions but is converted to $\underline{5}$ through the catalytic action of the 3-methylpyrazol anion. This led us to carry out the reaction in the presence of chloromethylformate as a scavenger for this anion. In this way compound $\underline{2}$ was obtained as the major reaction product from $\underline{1}$ and could be isolated in a yield of 52 %.

Scheme 1

 $E = COOCH_{2}$

As other 3-acyl-3H-pyrazoles [6] compound 2 is labile. At 60° it rearranges quantitatively to a mixture of 3 and 4 through a shift of the carbomethoxy group. The formation of 4 at the exclusion of its more stable isomer 5 [7] is evidence for an intramolecular, pericyclic mechanism for the rearrangement. Such a reaction course for both isomerisation pathways of 2 is further confirmed by the independence of product composition from reactant concentration.

The first order rate constants for the formation 3/4 from 2 [8] show a significant but small solvent effect (see table). This leads us to exclude zwitterionic structures such as <u>6</u> or <u>7</u> as distinct reaction intermediates [9]. However, it indicates some polar character in the transition state of the sigmatropic shift reaction. Unexpectedly the charge separation seems to be more pronounced for carbomethoxy-migration toward carbon $(2 \rightarrow 3)$ than for migration toward nitrogen $(2 \rightarrow 4)$.

The isomerisation of 2 is subject to acid catalysis. In acetic acid the rate is faster than would be expected from the increased solvent polarity. In dioxane a strong rate enhancement is observed upon addition of trifluoroacetic acid (TFA). Furthermore, the 3/4 product ratio changes from 22:78 in the uncatalysed reaction (dioxane) to 90:10 with acid.

We interpret the formation of $\underline{3}$ and $\underline{4}$ in the acid catalysed process as occurring from the two isomeric cations $\underline{8}$ and $\underline{9}$ according to scheme 2, the product ratio

being determined by the value of the equilibrium constant K between $\underline{8}$ and $\underline{9}$ and by the ratio k_{8-3}/k_{9-4} of the two rate constants for reaction from 8 and from 9. Protonation on oxygen, which has been proposed in other acid catalysed ester migrations [12], cannot rigorously be excluded. However, it seems unlikely in view of the known basicity of the cis-azo group [13].

Table Isomerisation of 2 to 3 & 4 at 64.8°.

solvent	E a) E T	k _{obs} · 10 ⁴	products	partial rate	constants, s ⁻¹
		s ⁻¹	<u>3</u> : <u>4</u>	k ₂₋₃ ·10 ⁴	k ₂₋₄ ·10 ⁴
CC14	32.5	1.09	20 : 80	0.22	0.87
dioxane	36.0	1.36	22 : 78	0.30	1.06
с ₆ н ₅ сі	37.5	1.70	28 : 72	0.48	1.22
с ₆ н ₅ си	42.0	2.57	39 : 61	1.00	1.57
t-butanol	43.9	3.19	44 : 56	1.40	1.79
DMSO	45.0	3.09	46 : 54	1.42	1.67
acetic acid	51.2	47.8	90 : 10	43.0	4.8
O.lN TFA/dioxane		2.1	39 : 61	0.8	1.3
lN TFA/dioxane		16.9	81 : 19	13.7	3,2
5N TFA/dioxane		4800 ^{b)}	90 : 10	4320	480

a) Solvent polarity parameter: Ch. Reichardt, Angew. Chem. 91, 119 (1979).

b) Extrapolated from rate measurements at lower temperature.

The participation of the carbomethoxy group in cationic 1,2-shifts is known from pinacol type rearrangements in aliphatic systems [14]. It implies a transfer of positive charge to the carbonyl carbon in the transition state 10 and its stabilisation according to formula <u>11</u> through the oxygen free electron pairs.

Scheme 2

CH₃O___O CH₃O___O >c=c< >c=c< 11

10

This work shows that 3H-pyrazoles are suitable model compounds for the study of sigmatropic 1,5- (1,2-)shift reactions involving functional groups at moderate temperature. Further results along this line are reported in the accompanying communication [15].

We wish to thank the Swiss National Science Foundation (project Nr. 2.943.0.77) and Ciba-Geigy Co. for their generous support.

Notes and References

- [1] J. Van Alphen, Rec. Trav. chim. Pays-Bas 62, 485, 491 (1943).
- [2] R. Hüttel, J. Riedl, H. Martin & K. Franke, Chem. Ber. <u>93</u>, 1425, 1433 (1960).
- [3] For a review on sigmatropic 1,5-shifts see: C.W. Spangler, Chem. Rev. <u>76</u>, 187 (1976).
- [4] P. Schiess & P. Fünfschilling, Tetrahedron Letters <u>1972</u>, 5195; P. Schiess & R. Dinkel, Tetrahedron Letters <u>1975</u>, 2503.
- [5] All new compounds gave satisfactory elemental analyses and spectral data in accord with their structure.
- [6] M. Franck-Neumann & C. Buchecker, Tetrahedron Letters <u>1972</u>, 937; Angew. Chem. <u>85</u>, 259 (1973); M. Franck-Neumann & C. Dietrich-Buchecker, Tetrahedron Letters <u>1976</u>, 2069; M. Martin & M. Regitz, Liebigs Ann. Chem. <u>1974</u>, 1702; H. Heydt & M. Regitz, Liebigs Ann. Chem. <u>1977</u>, 1766; A.S. Katner, J. org. Chemistry <u>38</u>, 825 (1973); K.J. Bramley, R. Grigg, G. Guilford & P. Milner, Tetrahedron <u>29</u>, 4159 (1973); R. Huisgen, H.U. Reissig & H. Huber, J. Amer. chem. Soc. <u>101</u>, 3647 (1979).
- [7] Compound <u>4</u> is slowly converted to <u>5</u> at 100°. Acylation of 3-methylpyrazol with chloromethylformate gave <u>5</u>, the product of thermodynamic control only.
- [8] Activation parameters for the conversion of 2 to 3/4 in chlorobenzene: $E_a = 24.0 + 0.4$ kcal/mol; log A = 11.8 ± 0.4 .
- [9] The solvent sensitivity $R_E (R_E = \Delta \log k / \Delta E_T [10])$ for migration toward carbon $(2 \rightarrow 3)$ is 0.070 and for migration toward nitrogen $(2 \rightarrow 4)$ 0.024. Comparable R_E -values are found for other reactions with slightly polar transition states, such as e.g.: Cycloaddition of diphenylketene to dihydropyrane [10] ($R_E = 0.110$); racemisation of 1,2-di-t-butyl-cyclopropanone [11] ($R_E = 0.069$).
- [10] R. Huisgen, L.A. Feiler & P. Otto, Chem. Ber. 102, 3444 (1969).
- [11] D.B. Sclove, J.F. Pazos, R.L. Camp & F.D. Greene, J. Amer. chem. Soc. <u>92</u>, 7488 (1970).
- [12] R.F. Childs & M. Zeya, J. Amer. chem. Soc. 96, 6418 (1974).
- [13] J.P. Snyder, M.L. Heyman & M. Gundestrup, J. chem. Soc. Perkin I 1977, 1551.
- [14] J. Kagan, D.A. Agdeppa, S.P. Singh, D.A. Mayers, C. Boyajian, C. Poorker & B.E. Firth, J. Amer. chem. Soc. <u>98</u>, 4581 (1976).
- [15] See following communication.

(Received in Germany 4 February 1980)